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Abstract-Web applications have become 
one of the most important communication 
channels between various kinds of service 
providers and clients. Along with the 
increased importance of Web applications, 
the negative impact of security in such 
applications has grown as well. Due to the 
limited time and resources, web software 
engineers need support in identifying 
vulnerable code. A practical approach to 
predicting vulnerable code would enable 
them to prioritize security auditing efforts. 
In this proposed system hybrid (static + 
dynamic) program attributes are used to 
characterize input validation and 
sanitation code patterns which act as a 
significant indicator of web application 
vulnerabilities. Current vulnerable 
prediction techniques rely on the 
availability of data labeled with the 
vulnerability information for training. For 
most web application, past vulnerability 
data is often not available or at least not 
complete. Hence to address both situations 
where labeled past data is fully available or 
not fully available, this approach can be 
used. The web program is sliced into small 
sinks and by using dynamic and static 
program analysis, input validation and 
sanitation attributes are generated. 
 
Keywords – Input validation, Input 
sanitation, Static Program analysis, 
Dynamic program analysis, Machine 
learning. 
 

I INTRODUCTION 
 
 Web applications play an important 
role in many of our daily activities such as 
social networking, email, banking, 
shopping, registrations, and so on. As web 

software is also highly accessible, web 
application vulnerabilities arguably have 
greater impact than vulnerabilities in other 
types of software. Web developers are 
directly responsible for the security of web 
applications. Unfortunately, they often have 
limited time to follow up with new arising 
security issues and are often not provided 
with adequate security training to become 
aware of state-of-the-art web security 
techniques. Input validation and input 
sanitization are two secure coding 
techniques that they can adopt to protect 
their programs from such common 
vulnerabilities. Input validation typically 
checks an input against required properties 
like data length, range, type, and sign. Input 
sanitization, in general, cleanses an input 
string by accepting only pre-defined 
characters and rejecting others, including 
characters with special meaning to the 
interpreter under consideration. Intuitively, 
an application is vulnerable if the 
developers failed to implement these 
techniques correctly or to a sufficient 
degree. 
 The code attributes that characterize 
validation and sanitization code 
implemented in the program could be used 
to predict web application vulnerabilities. 
Based on this hypothesis, we propose a set 
of code attributes called input validation 
and sanitization (IVS) attributes from which 
we build vulnerability predictors that are 
fine-grained, accurate, and scalable. The 
approach is fine-grained because it 
identifies vulnerabilities at program 
statement levels. We use both static and 
dynamic program analysis techniques to 
extract IVS attributes. Static analysis can 
help assess general properties of a program. 
Yet, dynamic analysis can focus on more 
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specific code characteristics that are 
complementary to the information obtained 
with static analysis. We use dynamic 
analysis only to infer the possible types of 
input validation and sanitization code, 
rather than to precisely prove their 
correctness, and apply machine learning on 
these inferences for vulnerability prediction. 
Therefore, we mitigate the scalability issue 
typically associated with dynamic analysis. 
Thus, our proposed IVS attributes reflect 
relevant properties of the implementations 
of input validation and input sanitization 
methods in web programs and are expected 
to help predict vulnerabilities in an accurate 
and scalable manner. Furthermore, both 
supervised learning and semi-supervised 
learning methods are used to build 
vulnerability predictors from IVS attributes, 
such that our method can also be used in 
contexts where there is limited vulnerability 
data for training. 
 

II RELATED WORKS 
 

           N. Jovanovic, C. Kruegel, and E. 
Kirda [1], have proposed “Pixy: A static 
analysis tool for detecting web application 
vulnerabilities,”  Pixy is the first open 
source tool for statically detecting XSS 
vulnerabilities in php code by means of data 
flow analysis. A flow-sensitive, 
interprocedural, and context sensitive edata 
flow analysis for PHP, targeted detecting 
taint-style vulnerabilities. This analysis 
process had to overcome significant 
conceptual challenges due to the untyped 
nature of PHP. Additional literal analysis 
and alias analysis are the steps that lead to 
more comprehensive and precise results 
than those provided by previous 
approaches. Pixy is a system that 
implements the proposed analysis 
technique, written in Java and licensed 
under the GPL. A straightforward approach 
to solving the problem of detecting taint-
style vulnerabilities would be to 
immediately conduct a taint analysis on the 
intermediate three-address code 
representation generated by the front-end. 

This taint analysis would identify points 
where tainted data can enter the program, 
propagate taint values along assignments 
and similar constructs, and inform the user 
of every sensitive sink that receives tainted 
input. also perform an alias analysis for 
providing information about alias 
relationships. Moreover, it is very beneficial 
for the taint analysis to know about the 
literal values that variables and constants 
may hold at each program point. This task is 
performed by literal analysis. 

 
Y. Xie and A. Aiken [2], “Static 

detection of security vulnerabilities in 
scripting languages,” In this approach, static 
analysis is applied to finding security 
vulnerabilities in PHP. The goal is to 
develop a bug detection tool that 
automatically finds serious vulnerabilities 
with high confidence. An interprocedural 
static analysis algorithm for PHP is 
proposed. A language as dynamic as PHP 
presents unique challenges for static 
analysis: language constructs that allow 
dynamic inclusion of program code, 
variables whose types change during 
execution, operations with semantics that 
depend on the runtime types of the 
operands, and pervasive use of hash tables 
and regular expression matching are just 
some features that must be modelled well to 
produce useful results. Proposed static 
analysis algorithm is used to find SQL 
injection vulnerabilities. Once configured, 
the analysis is fully automatic. Although we 
focus on SQL injections in this system, the 
same techniques can be applied to detecting 
other vulnerabilities such as cross site 
scripting (XSS) and code injection in web 
applications. We parse the PHP source code 
into abstract syntax trees (ASTs). The 
parser is based on the standard open source 
implementation of PHP 5.0.5. Each PHP 
source file contains a main section and zero 
or more user defined functions. We store 
the user-defined functions in the 
environment and start the analysis from the 
main function. For each function in the 
program, the analysis performs a standard 
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conversion from the abstract syntax tree 
(AST) of the function body into a control 
flow graph (CFG). The nodes of the CFG 
are basic blocks: maximal single entry, 
single exit sequences of statements. The 
edges of the CFG are the jump 6 
relationships between blocks. For 
conditional jumps, the corresponding CFG 
edge is labelled with the branch predicate. 
Each basic block is simulated using 
symbolic execution. The goal is to 
understand the collective effects of 
statements in a block on the global state of 
the program and summarize their effects 
into a concise block summary. After 
computing a summary for each basic block, 
we use a standard reachability analysis to 
combine block summaries into a function 
summary. The function summary describes 
the pre- and post conditions of a function. 

 
D. Balzarotti, M. Cova, V. 

Felmetsger, N. Jovanovic, E. Kirda, C. 
Kruegel, and G. Vigna [3], “Saner: 
Composing static and dynamic analysis to 
validate sanitization in web applications,”A 
novel approach to analyze the correctness of 
the sanitization process is introduced. The 
approach combines two complementary 
techniques to model the sanitization process 
and to verify its thoroughness. More 
precisely, this is the first technique based on 
static analysis models how an application 
modifies its inputs along the paths to a sink, 
using precise modelling of string 
manipulation routines. This approach uses a 
conservative model of string operations, 
which might lead to false positives. 
Therefore, a second technique based on 
dynamic analysis is devised. This approach 
works bottom-up from the sinks and 
reconstructs the code used by the 
application to modify the inputs. The code 
is then executed, using a large set of 
malicious input values to identify 
exploitable flaws in the sanitization process. 
In this approach, a static analysis technique 
is used that characterizes the sanitization 
process by modeling the way in which an 
application processes input values. This 

helps to identify cases where the 
sanitization is incorrect or incomplete. A 
dynamic analysis technique is introduced, 
that is able to reconstruct the code that is 
responsible for the sanitization of 
application inputs, and then execute this 
code on malicious inputs to identify faulty 
sanitization procedures. By composing the 
two techniques to leverage their advantages 
and mitigate their disadvantages. We 
implemented this approach and evaluated 
the system on a set of real-world 
applications. In the process, a number of 
previously unknown vulnerabilities in the 
sanitization routines of the analyzed 
programs are identified. 
  

L. K. Shar and H. B. K. Tan [4], 
“Predicting SQL injection and cross site 
scripting vulnerabilities through mining 
input sanitization patterns,” An application 
that accesses database via a SQL language 
is vulnerable if an unrestricted input is used 
to build the query string because an attacker 
might craft the input value to have 
unauthorized access to the database and 
perform malicious actions. This security 
issue is called SQLI vulnerability. An 
application that sends HTTP response data 
to a web client is vulnerable if an 
unrestricted input is included in the 
response data because an attacker might 
inject a malicious JavaScript code in the 
input value. The injected code when 
executed by the client’s browser could 
perform malicious actions to the client. This 
security issue is called XSS vulnerability. 
Web developers generally implement input 
sanitization schemes to prevent these two 
vulnerabilities. Input sanitization code 
attributes which can be statically collected. 
From these attributes, we aim to build SQLI 
and XSS vulnerability predictors which 
provide high recalls and low false alarm 
rates so that the predictors can be used 
alternatively or in combination with existing 
taint-based approaches. Compared to 
current vulnerability prediction approaches, 
we only use static code attributes and we 
target vulnerable code at statement level. 
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This proposal could be easily extended to 
address other web application 
vulnerabilities such as buffer overflow, path 
traversal, and URL redirects/forwards. 
These vulnerabilities are caused by the 
common weakness of web applications in 
handling user inputs properly. Classifiers as 
the base data miners for building 
vulnerability prediction models are used. 
Based on different characteristics of 
classification algorithms, classifiers can be 
grouped into different categories such as 
tree-based approaches, neural networks, 
support vector machines, nearest-neighbor 
approaches, statistical procedures, and 
ensembles. 

 
E. Arisholm, L. C. Briand, and E. B. 

Johannessen [5], “A systematic and 
comprehensive investigation of methods to 
build and evaluate fault prediction models,” 
This paper describes a study performed in 
an industrial setting that attempts to build 
predictive models to identify parts of a Java 
system with a high fault probability. The 
system under consideration is constantly 
evolving as several releases a year are 
shipped to customers. Developers usually 
have limited resources for their testing and 
would like to devote extra resources to 
faulty system parts. The main research 
focus of this paper is to systematically 
assess three aspects on how to build and 
evaluate fault-proneness models in the 
context of this large Java legacy system 
development project: (1) compare many 
data mining and machine learning 
techniques to build fault-proneness models, 
(2) assess the impact of using different 
metric sets such as source code structural 
measures and change/fault history (process 
measures), and (3) compare several 
alternative ways of assessing the 
performance of the models, in terms of (i) 
confusion matrix criteria such as accuracy 
and precision/recall, (ii) ranking ability, 
using the receiver operating characteristic 
area (ROC), and (iii) our proposed cost-
effectiveness measure (CE). 
 

III EXISTING SYSTEM 
 

 SQL injection (SQLI), cross site 
scripting (XSS), remote code execution 
(RCE), and file inclusion (FI) are among the 
most common and serious web application 
vulnerabilities threatening the privacy and 
security of both clients and applications 
nowadays. From the perspective of web 
developers, input validation and input 
sanitization are two secure coding 
techniques that they can adopt to protect 
their programs from such common 
vulnerabilities. Input validation typically 
checks an input against required properties 
like data length, range, type, and sign. Input 
sanitization, in general, cleanses an input 
string by accepting only pre-defined 
characters and rejecting others, including 
characters with special meaning to the 
interpreter under consideration. Intuitively, 
an application is vulnerable if the 
developers failed to implement these 
techniques correctly or to a sufficient 
degree. To address these security threats, 
many web vulnerability detection 
approaches, such as static taint analysis, 
dynamic taint analysis, modeling checking, 
symbolic and concolic testing, have been 
proposed. Static taint analysis approaches 
are scalable in general but are ineffective in 
practice due to high false positive rates. 
Dynamic taint analysis, model checking, 
symbolic and concolic testing techniques 
can be highly accurate as they are able to 
generate real attack values, but have 
scalability issues for large systems due to 
path explosion problem. There are also 
scalable vulnerability prediction methods. 
But the granularity of current prediction 
approaches is coarse-grained: they identify 
vulnerabilities at the level of software 
modules or components. 
 

             IV PROPOSED SYSTEM 
 
 Input validation and input 
sanitization are two secure coding 
techniques that they can adopt to protect 
their programs from such common 
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vulnerabilities. Input validation typically 
checks an input against required properties 
like data length, range, type, and sign. Input 
sanitization, in general, cleanses an input 
string by accepting only pre-defined 
characters and rejecting others, including 
characters with special meaning to the 
interpreter under consideration. Intuitively, 
an application is vulnerable if the 
developers failed to implement these 
techniques correctly or to a sufficient 
degree. We hypothesize that code attributes 
that characterize validation and sanitization 
code implemented in the program could be 
used to predict web application 
vulnerabilities. Based on this hypothesis, we 
propose a set of code attributes called input 
validation and sanitization (IVS) attributes 
from which we build vulnerability 
predictors that are fine-grained, accurate, 
and scalable. The approach is fine-grained 
because it identifies vulnerabilities at 
program statement levels. We use both 
static and dynamic program analysis 
techniques to extract IVS attributes. Static 
analysis can help assess general properties 
of a program. Yet, dynamic analysis can 
focus on more specific code characteristics 
that are complementary to the information 
obtained with static analysis. We used 
dynamic analysis only to infer the possible 
types of input validation and sanitization 
code, rather than to precisely prove their 
correctness, and apply machine learning on 
these inferences for vulnerability prediction. 
Therefore, we mitigate the scalability issue 
typically associated with dynamic analysis. 
Thus, our proposed IVS attributes reflect 
relevant properties of the implementations 
of input validation and input sanitization 
methods in web programs and are expected 
to help predict vulnerabilities in an accurate 
and scalable manner. Furthermore, we use 
both supervised learning and semi-
supervised learning methods to build 
vulnerability predictors from IVS attributes, 
such that our method can also be used in 
contexts where there is limited vulnerability 
data for training. 

 

 
      Fig. 4.1 Proposed System Diagram 
 
DIFFERENT MODULES IN THE 
PROJECT: 
1.  Static and dynamic program analysis 
2.  Backward slicing 
3.  Hybrid program analysis 
4.  Slicing of each sink 
5. Static and dynamic analysis on each slice 
6.  Classification of path in each slice 
7.  IVS attributes 
8.  Building vulnerability prediction model 
 A. Data representation 
 B. Data processing 
9.   Supervised learning 
10. Semi-supervised learning 
11. Final predictor 
 

1. STATIC AND DYNAMIC 
PROGRAM ANALYSIS 

 
 Both static and dynamic program 
analysis techniques are used to extract IVS 
attributes. Static analysis can help assess 
general properties of a program. Yet, 
dynamic analysis can focus on more 
specific code characteristics that are 
complementary to the information obtained 
with static analysis. The dynamic analysis is 
used only to infer the possible types of input 
validation and sanitization code, rather than 
to precisely prove their correctness. 
 

2. BACKWARD SLICING 
 

 Program slicing is a program 
analysis and transformation technique to 
decompose programs by analyzing their 
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data and control flow. Given an imperative 
program, a slice is an executable program 
whose behavior must be identical to the 
specialized subset of the original program's 
behavior. A program slice consists of those 
program statements which are (potentially) 
related to the values computed at some 
program point and/or variable, referred to as 
a slicing criterion. 
.             

3. HYBRID PROGRAM ANALYSIS 
 

 The analysis is based on the control 
flow graph (CFG), the program dependence 
graph (PDG), and the system dependence 
graph (SDG) of a web application program. 
Each node in the graphs represents one 
source code statement. We may therefore 
use program statement and node 
interchangeably depending on the context. 
A sink is a node in a CFG that uses 
variables defined from input sources and 
thus, may be vulnerable to input 
manipulation attacks. This allows us to 
predict vulnerabilities at statement levels. 
Input nodes are the nodes at which data 
from the external environment are accessed. 
A variable is tainted if it is defined from 
input nodes. As described earlier, the first 
step the approach is to compute a backward 
static program slice for each sink and the set 
of tainted variables used. Backward static 
slice with respect to slicing criterion 
consists of all nodes (including predicates) 
in the CFG that may affect the values of, 
subset of variables are used. We first 
construct the PDG for the main method of a 
web application program and also construct 
PDGs for the methods called from the main 
method according to the algorithm given by 
Ferrante et al. We then construct the SDG. 
A PDG models a program procedure as a 
graph in which the nodes represent program 
statements and the edges represent data or 
control dependences between statements. 
SDG extends PDG by modeling 
interprocedural relations between the main 
program and its subprograms. 

 
4. SLICING OF EACH SINK 

 
 Program slicing is method for 
automatically decomposing programs by 
analyzing their data flow and control flow. 
Starting from a subset of a program’s 
behavior, slicing reduce that program to a 
minimal form which still produces that 
behavior. The first step of our approach is to 
compute a backward static program slice for 
each sink and the set of tainted variable 
used in the sink. 
 

5. STATIC AND DYNAMIC 
ANALYSIS ON EACH SLICE 

       
 The developers will implement 
adequate input validation and sanitization 
methods but yet, they may fail to recognize 
all the data that could be manipulated by 
external users, thereby missing some of the 
inputs for validation. Therefore, in security 
analysis, it is important to first identify all 
the input sources. The reason for classifying 
the inputs into different types is that each 
class of inputs causes different types of 
vulnerabilities and different security 
defense schemes may be required to secure 
these different classes of inputs. 
 

6. CLASSIFICATION OF PATH IN 
EACH SCLICE 

 
 For each sink, a backward static 
program slice is computed with respect to 
the sink statement and the variables used in 
the sinks. Each path in the slice is analyzed 
using hybrid (static and dynamic) analysis 
to extract its validation and sanitization 
effects on those variables. The path is then 
classified according to its input validation 
and sanitization effects inferred by the 
hybrid analysis. 
 

7. IVS ATTRIBUTES 
 

 These attributes characterize various 
types of program functions and operations 
that are commonly used as input validation 
and sanitization procedures to defend 
against web application vulnerabilities. 
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Using these attributes, functions and 
operations are classified according to their 
security-related properties. Hybrid analysis-
based attributes are attributes to be 
extracted combining static analysis and 
dynamic analysis. The reason for including 
input sources in our classification scheme is 
that most of the common vulnerabilities 
arise from the misidentification of inputs. 
That is, developers may implement 
adequate input validation and sanitization 
methods but yet, they may fail to recognize 
all the data that could be manipulated by 
external users, thereby missing some of the 
inputs for validation. Therefore, in security 
analysis, it is important to first identify all 
the input sources.  
 
 This hybrid analysis-based 
classification is applied for validation and 
sanitization methods implemented using 
both standard security functions and 
nonstandard security functions. If there are 
only standard security functions to be 
classified, we classify them based on their 
security-related information else dynamic 
analysis is used. Various input validation 
and sanitization processes may be 
implemented using language built-in 
functions and/or custom functions. Since 
inputs to web applications are naturally 
strings, string replacement/ matching 
functions or string manipulation procedures 
like escaping are generally used to 
implement custom input validation and 
sanitization procedures. A good security 
function generally consists of a set of string 
functions that accept safe strings or reject 
unsafe strings. These functions are clearly 
important indicators of vulnerabilities, but 
we 19 need to analyze the purpose of each 
validation and sanitization function since 
different defense methods are generally 
required to prevent different types of 
vulnerabilities. It is important to classify 
these methods implemented in a program 
path into different types because, together 
with their associated vulnerability data, our 
vulnerability predictors can learn this 

information and then predict future 
vulnerabilities. 
 

8. BUILDING VULNERABILITY 
PREDICTION MODEL 

 
 Many machine learning techniques 
can be used to build vulnerability 
predictors. Regardless of the specific 
technique used, the goal is to learn and 
generalize patterns in the data associated 
with sinks, which can then be efficiently 
used for predicting vulnerability for new 
sinks. As more sophisticated security 
attacks are being discovered, it is important 
for a vulnerability analysis approach to be 
able to adapt. With machine learning, it is 
possible to adapt to new vulnerability 
patterns via re-training. 
 
A. DATA REPRESENTATION 
Our unit of measurement, an instance in 
machine learning terminology, is a path in 
the slice of a sink and we characterize each 
path with IVS attributes. The attribute 
values may range from zero to an upper 
bound that depends on the number of 
classified program operations or functions. 
Since 33 IVS attributes are proposed, each 
path would be represented by a 33-
dimensional attribute vector.  
 
B. DATA PROCESSING 
In most of our datasets, the proportion of 
vulnerable sinks to non-vulnerable ones is 
small. This is an imbalanced data problem 
and should be expected in many such 
vulnerability datasets. Prior studies have 
shown that imbalanced data can 
significantly affect the performance of 
machine learning classifiers, because some 
of the data might go unlearned by the 
classifier due to their lack of representation, 
thus leading to induction rules which tend to 
explain the majority class data and 
favouring its predictive accuracy. Since for 
our problem, the minority class data capture 
the ‘vulnerable’ instances, we need a high 
predictive accuracy for this class as missing 
vulnerability is far more critical than 
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reporting a false alarm. To address this 
problem, we use a sampling method called 
adaptive synthetic oversampling. It balances 
the (unbalanced) data by generating 
synthetic, artificial data for the minority 
class instances, thus reducing the bias 
introduced by the class imbalance problem. 
It does not require modification of standard 
classifiers and thus, can be conveniently 
added as an additional data pre-processing 
step. 
 

9. SUPERVISED LEARNING 
 

 Classification is a type of supervised 
learning methods because the class label of 
each training instance has to be provided. In 
this study, we build logistic regression and 
Random Forest (RF) models from the 
proposed attributes.  LR is a type of 
statistical classification model. It can be 
used for predicting the outcome (class label) 
of a dependent attribute based on one or 
more predictor attributes. The probabilities 
describing the possible outcomes of a given 
instance are modelled. Logistic regression 
analysis is flexible in terms of the types of 
monotonic relationships it can model 
between the probability of vulnerability and 
predictor attributes. RF is an ensemble 
learning method for classification that 
consists of a collection of tree-structured 
classifiers. In many cases the predictive 
accuracy is greatly enhanced as the final 
prediction output comes from an ensemble 
of learners, rather than a single learner. 
Given an input sample, each tree casts a 
vote (classification) and the forest outputs 
the classification having the majority vote 
from the trees. 
 

10. SEMI-SUERVISED LEARNING 
 As ensemble learning works by 
combining individual classifiers, it typically 
requires significant amounts of labeled data 
for training. In certain industrial contexts, 
relevant and labeled data available for 
learning may be limited. Semi-supervised 
methods [39] use, for training, a small 
amount of labeled data together with a 

much larger amount of unlabeled data. This 
method that exploits unlabeled data can 
enable ensemble learning when there are 
very few labeled data. Combining semi 
supervised learning with ensembles has 
many advantages. Unlabeled data is 
exploited to help enrich labeled training 
samples allowing ensemble learning: Each 
individual learners improved with unlabeled 
data labeled by the ensemble consisting of 
all other learners. A few different types of 
semi-supervised methods, such as 
EMbased, clustering-based, and 
disagreement-based learning, have been 
proposed in literature. But none of these 
techniques has been explored for 
vulnerability prediction so far. Hence, based 
on these motivations, we explore the use of 
an algorithm called Co Forest, Co-trained 
Random Forest (CF), which applies semi-
supervised learning on RF. It is a 
disagreement-based, semi-supervised 
learner. CF uses multiple, diverse learners, 
and combines them to exploit unlabeled 
data (semi supervised learning), and 
maintains a large disagreement between the 
learners to promote the learning process. 
 

11. FINAL PREDICTOR 
 A qualified web application 
vulnerability predictor can be built with the 
help of the input validation and sanitation 
attributes and the machine learning 
techniques. By using the above attributes 
we will be able to generate a web 
application predictor which is highly 
accurate, fine-grained and scalable. 
 

V IMPLEMENTATION 
 
A. DERIVATION OF IVS ATTRIBUTES 

 The code attributes that characterize 
validation and sanitization code 
implemented in the program could be used 
to predict web application vulnerabilities. 
Based on this hypothesis, we propose a set 
of code attributes called input validation 
and sanitization (IVS) attributes from which 
we build vulnerability predictors that are 
fine-grained, accurate, and scalable. The 
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approach is fine-grained because it 
identifies vulnerabilities at program 
statement levels. We use both static and 
dynamic program analysis techniques to 
extract IVS attributes. Static analysis can 
help assess general properties of a program. 
Yet, dynamic analysis can focus on more 
specific code characteristics that are 
complementary to the information obtained 
with static analysis. We use dynamic 
analysis only to infer the possible types of 
input validation and sanitization code, 
rather than to precisely prove their 
correctness. 

          
B. LIST OF IVS ATTRIBUTES 

  1. Client - Input accessed from HTTP 
request parameters such as HTTP Get  
2. File - Input accessed from files such as 
Cookies, XML  
3. Text-database - Text-based input 
accessed from database  
4. Numeric-database - Numeric-based input 
accessed from database  
5. Session - Input accessed from persistent 
data object such as HTTP Session  
6. Uninit - Un-initialized program variable  
7. Un-taint - Function that returns 
predefined information or information not 
influenced by external users.  
8. Known-vuln-user - Custom function that 
has caused security issues in the past. 
9. Known-vuln-std - Language built-in 
function that has caused security issues in 
the past.  
10. Propagate - Function or operation that 
propagates partial or complete value of a 
string.  
11. Numeric Function or operation that 
converts a string into a numeric  
12. DB-operator Function that filters query 
operators such as ( = )  
13. DB-comment-delimiter Function that 
filters query comment delimiters such as (–)  
14. DB-special Function that filters other 
database special characters different from 
the above, such as (\x00) and (\x1a)  
15. String-delimiter Function that filters 
string delimiters such as (‘) and (“)  

16. Lang-comment-delimiter Function that 
filters programming language comment 
delimiter characters such as (/)  
17. Other-delimiter Function that filters 
other delimiters different from the above 
delimiters such as (#)  
18. Script-tag Function that filters dynamic 
client script tags such as (<script>)  
19. HTML-tag Function that filters static 
client script tags such as (<div>)  
20. Event-handler Function that disallow 
the use of inputs as the values of client side 
event handlers such as (onload = )  
21. Null-byte Function that filters null byte 
(%00)  
22. Dot Function that filters dot (.)  
23. DotDotSlash Function that filters dot-
dot-slash (../) sequences  
24. Backslash Function that filters 
backslash (\)  

     25. Slash Function that filters slash (/) 
26. Newline Function that filters newline 
(\n)  
27. Colon Function that filters colon (,) or 
semi-colon (;)  
28. Other-special Function that filters any 
other special characters different from the 
above  
29. Encode Function that encodes a string 
into a different format  
30. Canonicalize Function that converts a 
string into its most standard, simplest form  
31. Path Function that filters directory paths 
or URLs  

     32. Limit-length Function or operation that 
limits a string into a specific length 
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5.2 Implementation of vulnerability 

predictor 
     

VI CONCLUSION 
 In this project, the input validation and 

sanitation attributes are generated. The first 
step of our approach is to compute a static 
backward slice for each sink. Both the static 
program analysis and dynamic program 
analysis are used to extract the input validation 
and sanitation attributes. The program analysis 
is based on the control flow graph, control 
dependence graph and system dependence 
graph of a web program. The input validation 
and sanitation attributes will act as the building 
blocks for the web application vulnerability 
predictor. 
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