
International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 80
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

WEB APPLICATION VULNERABILITY PREDICTION USING
MACHINE LEARNING

1Vignesh M, 2Dr. K. Kumar
1PG Scholar, 2Assistant Professor

Department of Computer Science and Engineering,
Government College of Technology, Coimbatore

Mail id: mvignesh240@gmail.com, kkumar@gct.ac.in

Abstract-Web applications have become
one of the most important communication
channels between various kinds of service
providers and clients. Along with the
increased importance of Web applications,
the negative impact of security in such
applications has grown as well. Due to the
limited time and resources, web software
engineers need support in identifying
vulnerable code. A practical approach to
predicting vulnerable code would enable
them to prioritize security auditing efforts.
In this proposed system hybrid (static +
dynamic) program attributes are used to
characterize input validation and
sanitation code patterns which act as a
significant indicator of web application
vulnerabilities. Current vulnerable
prediction techniques rely on the
availability of data labeled with the
vulnerability information for training. For
most web application, past vulnerability
data is often not available or at least not
complete. Hence to address both situations
where labeled past data is fully available or
not fully available, this approach can be
used. The web program is sliced into small
sinks and by using dynamic and static
program analysis, input validation and
sanitation attributes are generated.

Keywords – Input validation, Input
sanitation, Static Program analysis,
Dynamic program analysis, Machine
learning.

I INTRODUCTION

 Web applications play an important
role in many of our daily activities such as
social networking, email, banking,
shopping, registrations, and so on. As web

software is also highly accessible, web
application vulnerabilities arguably have
greater impact than vulnerabilities in other
types of software. Web developers are
directly responsible for the security of web
applications. Unfortunately, they often have
limited time to follow up with new arising
security issues and are often not provided
with adequate security training to become
aware of state-of-the-art web security
techniques. Input validation and input
sanitization are two secure coding
techniques that they can adopt to protect
their programs from such common
vulnerabilities. Input validation typically
checks an input against required properties
like data length, range, type, and sign. Input
sanitization, in general, cleanses an input
string by accepting only pre-defined
characters and rejecting others, including
characters with special meaning to the
interpreter under consideration. Intuitively,
an application is vulnerable if the
developers failed to implement these
techniques correctly or to a sufficient
degree.
 The code attributes that characterize
validation and sanitization code
implemented in the program could be used
to predict web application vulnerabilities.
Based on this hypothesis, we propose a set
of code attributes called input validation
and sanitization (IVS) attributes from which
we build vulnerability predictors that are
fine-grained, accurate, and scalable. The
approach is fine-grained because it
identifies vulnerabilities at program
statement levels. We use both static and
dynamic program analysis techniques to
extract IVS attributes. Static analysis can
help assess general properties of a program.
Yet, dynamic analysis can focus on more

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 81
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

specific code characteristics that are
complementary to the information obtained
with static analysis. We use dynamic
analysis only to infer the possible types of
input validation and sanitization code,
rather than to precisely prove their
correctness, and apply machine learning on
these inferences for vulnerability prediction.
Therefore, we mitigate the scalability issue
typically associated with dynamic analysis.
Thus, our proposed IVS attributes reflect
relevant properties of the implementations
of input validation and input sanitization
methods in web programs and are expected
to help predict vulnerabilities in an accurate
and scalable manner. Furthermore, both
supervised learning and semi-supervised
learning methods are used to build
vulnerability predictors from IVS attributes,
such that our method can also be used in
contexts where there is limited vulnerability
data for training.

II RELATED WORKS

 N. Jovanovic, C. Kruegel, and E.
Kirda [1], have proposed “Pixy: A static
analysis tool for detecting web application
vulnerabilities,” Pixy is the first open
source tool for statically detecting XSS
vulnerabilities in php code by means of data
flow analysis. A flow-sensitive,
interprocedural, and context sensitive edata
flow analysis for PHP, targeted detecting
taint-style vulnerabilities. This analysis
process had to overcome significant
conceptual challenges due to the untyped
nature of PHP. Additional literal analysis
and alias analysis are the steps that lead to
more comprehensive and precise results
than those provided by previous
approaches. Pixy is a system that
implements the proposed analysis
technique, written in Java and licensed
under the GPL. A straightforward approach
to solving the problem of detecting taint-
style vulnerabilities would be to
immediately conduct a taint analysis on the
intermediate three-address code
representation generated by the front-end.

This taint analysis would identify points
where tainted data can enter the program,
propagate taint values along assignments
and similar constructs, and inform the user
of every sensitive sink that receives tainted
input. also perform an alias analysis for
providing information about alias
relationships. Moreover, it is very beneficial
for the taint analysis to know about the
literal values that variables and constants
may hold at each program point. This task is
performed by literal analysis.

Y. Xie and A. Aiken [2], “Static

detection of security vulnerabilities in
scripting languages,” In this approach, static
analysis is applied to finding security
vulnerabilities in PHP. The goal is to
develop a bug detection tool that
automatically finds serious vulnerabilities
with high confidence. An interprocedural
static analysis algorithm for PHP is
proposed. A language as dynamic as PHP
presents unique challenges for static
analysis: language constructs that allow
dynamic inclusion of program code,
variables whose types change during
execution, operations with semantics that
depend on the runtime types of the
operands, and pervasive use of hash tables
and regular expression matching are just
some features that must be modelled well to
produce useful results. Proposed static
analysis algorithm is used to find SQL
injection vulnerabilities. Once configured,
the analysis is fully automatic. Although we
focus on SQL injections in this system, the
same techniques can be applied to detecting
other vulnerabilities such as cross site
scripting (XSS) and code injection in web
applications. We parse the PHP source code
into abstract syntax trees (ASTs). The
parser is based on the standard open source
implementation of PHP 5.0.5. Each PHP
source file contains a main section and zero
or more user defined functions. We store
the user-defined functions in the
environment and start the analysis from the
main function. For each function in the
program, the analysis performs a standard

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 82
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

conversion from the abstract syntax tree
(AST) of the function body into a control
flow graph (CFG). The nodes of the CFG
are basic blocks: maximal single entry,
single exit sequences of statements. The
edges of the CFG are the jump 6
relationships between blocks. For
conditional jumps, the corresponding CFG
edge is labelled with the branch predicate.
Each basic block is simulated using
symbolic execution. The goal is to
understand the collective effects of
statements in a block on the global state of
the program and summarize their effects
into a concise block summary. After
computing a summary for each basic block,
we use a standard reachability analysis to
combine block summaries into a function
summary. The function summary describes
the pre- and post conditions of a function.

D. Balzarotti, M. Cova, V.

Felmetsger, N. Jovanovic, E. Kirda, C.
Kruegel, and G. Vigna [3], “Saner:
Composing static and dynamic analysis to
validate sanitization in web applications,”A
novel approach to analyze the correctness of
the sanitization process is introduced. The
approach combines two complementary
techniques to model the sanitization process
and to verify its thoroughness. More
precisely, this is the first technique based on
static analysis models how an application
modifies its inputs along the paths to a sink,
using precise modelling of string
manipulation routines. This approach uses a
conservative model of string operations,
which might lead to false positives.
Therefore, a second technique based on
dynamic analysis is devised. This approach
works bottom-up from the sinks and
reconstructs the code used by the
application to modify the inputs. The code
is then executed, using a large set of
malicious input values to identify
exploitable flaws in the sanitization process.
In this approach, a static analysis technique
is used that characterizes the sanitization
process by modeling the way in which an
application processes input values. This

helps to identify cases where the
sanitization is incorrect or incomplete. A
dynamic analysis technique is introduced,
that is able to reconstruct the code that is
responsible for the sanitization of
application inputs, and then execute this
code on malicious inputs to identify faulty
sanitization procedures. By composing the
two techniques to leverage their advantages
and mitigate their disadvantages. We
implemented this approach and evaluated
the system on a set of real-world
applications. In the process, a number of
previously unknown vulnerabilities in the
sanitization routines of the analyzed
programs are identified.

L. K. Shar and H. B. K. Tan [4],
“Predicting SQL injection and cross site
scripting vulnerabilities through mining
input sanitization patterns,” An application
that accesses database via a SQL language
is vulnerable if an unrestricted input is used
to build the query string because an attacker
might craft the input value to have
unauthorized access to the database and
perform malicious actions. This security
issue is called SQLI vulnerability. An
application that sends HTTP response data
to a web client is vulnerable if an
unrestricted input is included in the
response data because an attacker might
inject a malicious JavaScript code in the
input value. The injected code when
executed by the client’s browser could
perform malicious actions to the client. This
security issue is called XSS vulnerability.
Web developers generally implement input
sanitization schemes to prevent these two
vulnerabilities. Input sanitization code
attributes which can be statically collected.
From these attributes, we aim to build SQLI
and XSS vulnerability predictors which
provide high recalls and low false alarm
rates so that the predictors can be used
alternatively or in combination with existing
taint-based approaches. Compared to
current vulnerability prediction approaches,
we only use static code attributes and we
target vulnerable code at statement level.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 83
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

This proposal could be easily extended to
address other web application
vulnerabilities such as buffer overflow, path
traversal, and URL redirects/forwards.
These vulnerabilities are caused by the
common weakness of web applications in
handling user inputs properly. Classifiers as
the base data miners for building
vulnerability prediction models are used.
Based on different characteristics of
classification algorithms, classifiers can be
grouped into different categories such as
tree-based approaches, neural networks,
support vector machines, nearest-neighbor
approaches, statistical procedures, and
ensembles.

E. Arisholm, L. C. Briand, and E. B.

Johannessen [5], “A systematic and
comprehensive investigation of methods to
build and evaluate fault prediction models,”
This paper describes a study performed in
an industrial setting that attempts to build
predictive models to identify parts of a Java
system with a high fault probability. The
system under consideration is constantly
evolving as several releases a year are
shipped to customers. Developers usually
have limited resources for their testing and
would like to devote extra resources to
faulty system parts. The main research
focus of this paper is to systematically
assess three aspects on how to build and
evaluate fault-proneness models in the
context of this large Java legacy system
development project: (1) compare many
data mining and machine learning
techniques to build fault-proneness models,
(2) assess the impact of using different
metric sets such as source code structural
measures and change/fault history (process
measures), and (3) compare several
alternative ways of assessing the
performance of the models, in terms of (i)
confusion matrix criteria such as accuracy
and precision/recall, (ii) ranking ability,
using the receiver operating characteristic
area (ROC), and (iii) our proposed cost-
effectiveness measure (CE).

III EXISTING SYSTEM

 SQL injection (SQLI), cross site
scripting (XSS), remote code execution
(RCE), and file inclusion (FI) are among the
most common and serious web application
vulnerabilities threatening the privacy and
security of both clients and applications
nowadays. From the perspective of web
developers, input validation and input
sanitization are two secure coding
techniques that they can adopt to protect
their programs from such common
vulnerabilities. Input validation typically
checks an input against required properties
like data length, range, type, and sign. Input
sanitization, in general, cleanses an input
string by accepting only pre-defined
characters and rejecting others, including
characters with special meaning to the
interpreter under consideration. Intuitively,
an application is vulnerable if the
developers failed to implement these
techniques correctly or to a sufficient
degree. To address these security threats,
many web vulnerability detection
approaches, such as static taint analysis,
dynamic taint analysis, modeling checking,
symbolic and concolic testing, have been
proposed. Static taint analysis approaches
are scalable in general but are ineffective in
practice due to high false positive rates.
Dynamic taint analysis, model checking,
symbolic and concolic testing techniques
can be highly accurate as they are able to
generate real attack values, but have
scalability issues for large systems due to
path explosion problem. There are also
scalable vulnerability prediction methods.
But the granularity of current prediction
approaches is coarse-grained: they identify
vulnerabilities at the level of software
modules or components.

 IV PROPOSED SYSTEM

 Input validation and input
sanitization are two secure coding
techniques that they can adopt to protect
their programs from such common

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 84
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

vulnerabilities. Input validation typically
checks an input against required properties
like data length, range, type, and sign. Input
sanitization, in general, cleanses an input
string by accepting only pre-defined
characters and rejecting others, including
characters with special meaning to the
interpreter under consideration. Intuitively,
an application is vulnerable if the
developers failed to implement these
techniques correctly or to a sufficient
degree. We hypothesize that code attributes
that characterize validation and sanitization
code implemented in the program could be
used to predict web application
vulnerabilities. Based on this hypothesis, we
propose a set of code attributes called input
validation and sanitization (IVS) attributes
from which we build vulnerability
predictors that are fine-grained, accurate,
and scalable. The approach is fine-grained
because it identifies vulnerabilities at
program statement levels. We use both
static and dynamic program analysis
techniques to extract IVS attributes. Static
analysis can help assess general properties
of a program. Yet, dynamic analysis can
focus on more specific code characteristics
that are complementary to the information
obtained with static analysis. We used
dynamic analysis only to infer the possible
types of input validation and sanitization
code, rather than to precisely prove their
correctness, and apply machine learning on
these inferences for vulnerability prediction.
Therefore, we mitigate the scalability issue
typically associated with dynamic analysis.
Thus, our proposed IVS attributes reflect
relevant properties of the implementations
of input validation and input sanitization
methods in web programs and are expected
to help predict vulnerabilities in an accurate
and scalable manner. Furthermore, we use
both supervised learning and semi-
supervised learning methods to build
vulnerability predictors from IVS attributes,
such that our method can also be used in
contexts where there is limited vulnerability
data for training.

 Fig. 4.1 Proposed System Diagram

DIFFERENT MODULES IN THE
PROJECT:
1. Static and dynamic program analysis
2. Backward slicing
3. Hybrid program analysis
4. Slicing of each sink
5. Static and dynamic analysis on each slice
6. Classification of path in each slice
7. IVS attributes
8. Building vulnerability prediction model
 A. Data representation
 B. Data processing
9. Supervised learning
10. Semi-supervised learning
11. Final predictor

1. STATIC AND DYNAMIC
PROGRAM ANALYSIS

 Both static and dynamic program
analysis techniques are used to extract IVS
attributes. Static analysis can help assess
general properties of a program. Yet,
dynamic analysis can focus on more
specific code characteristics that are
complementary to the information obtained
with static analysis. The dynamic analysis is
used only to infer the possible types of input
validation and sanitization code, rather than
to precisely prove their correctness.

2. BACKWARD SLICING

 Program slicing is a program
analysis and transformation technique to
decompose programs by analyzing their

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 85
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

data and control flow. Given an imperative
program, a slice is an executable program
whose behavior must be identical to the
specialized subset of the original program's
behavior. A program slice consists of those
program statements which are (potentially)
related to the values computed at some
program point and/or variable, referred to as
a slicing criterion.
.

3. HYBRID PROGRAM ANALYSIS

 The analysis is based on the control
flow graph (CFG), the program dependence
graph (PDG), and the system dependence
graph (SDG) of a web application program.
Each node in the graphs represents one
source code statement. We may therefore
use program statement and node
interchangeably depending on the context.
A sink is a node in a CFG that uses
variables defined from input sources and
thus, may be vulnerable to input
manipulation attacks. This allows us to
predict vulnerabilities at statement levels.
Input nodes are the nodes at which data
from the external environment are accessed.
A variable is tainted if it is defined from
input nodes. As described earlier, the first
step the approach is to compute a backward
static program slice for each sink and the set
of tainted variables used. Backward static
slice with respect to slicing criterion
consists of all nodes (including predicates)
in the CFG that may affect the values of,
subset of variables are used. We first
construct the PDG for the main method of a
web application program and also construct
PDGs for the methods called from the main
method according to the algorithm given by
Ferrante et al. We then construct the SDG.
A PDG models a program procedure as a
graph in which the nodes represent program
statements and the edges represent data or
control dependences between statements.
SDG extends PDG by modeling
interprocedural relations between the main
program and its subprograms.

4. SLICING OF EACH SINK

 Program slicing is method for
automatically decomposing programs by
analyzing their data flow and control flow.
Starting from a subset of a program’s
behavior, slicing reduce that program to a
minimal form which still produces that
behavior. The first step of our approach is to
compute a backward static program slice for
each sink and the set of tainted variable
used in the sink.

5. STATIC AND DYNAMIC
ANALYSIS ON EACH SLICE

 The developers will implement
adequate input validation and sanitization
methods but yet, they may fail to recognize
all the data that could be manipulated by
external users, thereby missing some of the
inputs for validation. Therefore, in security
analysis, it is important to first identify all
the input sources. The reason for classifying
the inputs into different types is that each
class of inputs causes different types of
vulnerabilities and different security
defense schemes may be required to secure
these different classes of inputs.

6. CLASSIFICATION OF PATH IN
EACH SCLICE

 For each sink, a backward static
program slice is computed with respect to
the sink statement and the variables used in
the sinks. Each path in the slice is analyzed
using hybrid (static and dynamic) analysis
to extract its validation and sanitization
effects on those variables. The path is then
classified according to its input validation
and sanitization effects inferred by the
hybrid analysis.

7. IVS ATTRIBUTES

 These attributes characterize various
types of program functions and operations
that are commonly used as input validation
and sanitization procedures to defend
against web application vulnerabilities.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 86
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Using these attributes, functions and
operations are classified according to their
security-related properties. Hybrid analysis-
based attributes are attributes to be
extracted combining static analysis and
dynamic analysis. The reason for including
input sources in our classification scheme is
that most of the common vulnerabilities
arise from the misidentification of inputs.
That is, developers may implement
adequate input validation and sanitization
methods but yet, they may fail to recognize
all the data that could be manipulated by
external users, thereby missing some of the
inputs for validation. Therefore, in security
analysis, it is important to first identify all
the input sources.

 This hybrid analysis-based
classification is applied for validation and
sanitization methods implemented using
both standard security functions and
nonstandard security functions. If there are
only standard security functions to be
classified, we classify them based on their
security-related information else dynamic
analysis is used. Various input validation
and sanitization processes may be
implemented using language built-in
functions and/or custom functions. Since
inputs to web applications are naturally
strings, string replacement/ matching
functions or string manipulation procedures
like escaping are generally used to
implement custom input validation and
sanitization procedures. A good security
function generally consists of a set of string
functions that accept safe strings or reject
unsafe strings. These functions are clearly
important indicators of vulnerabilities, but
we 19 need to analyze the purpose of each
validation and sanitization function since
different defense methods are generally
required to prevent different types of
vulnerabilities. It is important to classify
these methods implemented in a program
path into different types because, together
with their associated vulnerability data, our
vulnerability predictors can learn this

information and then predict future
vulnerabilities.

8. BUILDING VULNERABILITY
PREDICTION MODEL

 Many machine learning techniques
can be used to build vulnerability
predictors. Regardless of the specific
technique used, the goal is to learn and
generalize patterns in the data associated
with sinks, which can then be efficiently
used for predicting vulnerability for new
sinks. As more sophisticated security
attacks are being discovered, it is important
for a vulnerability analysis approach to be
able to adapt. With machine learning, it is
possible to adapt to new vulnerability
patterns via re-training.

A. DATA REPRESENTATION
Our unit of measurement, an instance in
machine learning terminology, is a path in
the slice of a sink and we characterize each
path with IVS attributes. The attribute
values may range from zero to an upper
bound that depends on the number of
classified program operations or functions.
Since 33 IVS attributes are proposed, each
path would be represented by a 33-
dimensional attribute vector.

B. DATA PROCESSING
In most of our datasets, the proportion of
vulnerable sinks to non-vulnerable ones is
small. This is an imbalanced data problem
and should be expected in many such
vulnerability datasets. Prior studies have
shown that imbalanced data can
significantly affect the performance of
machine learning classifiers, because some
of the data might go unlearned by the
classifier due to their lack of representation,
thus leading to induction rules which tend to
explain the majority class data and
favouring its predictive accuracy. Since for
our problem, the minority class data capture
the ‘vulnerable’ instances, we need a high
predictive accuracy for this class as missing
vulnerability is far more critical than

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 87
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

reporting a false alarm. To address this
problem, we use a sampling method called
adaptive synthetic oversampling. It balances
the (unbalanced) data by generating
synthetic, artificial data for the minority
class instances, thus reducing the bias
introduced by the class imbalance problem.
It does not require modification of standard
classifiers and thus, can be conveniently
added as an additional data pre-processing
step.

9. SUPERVISED LEARNING

 Classification is a type of supervised
learning methods because the class label of
each training instance has to be provided. In
this study, we build logistic regression and
Random Forest (RF) models from the
proposed attributes. LR is a type of
statistical classification model. It can be
used for predicting the outcome (class label)
of a dependent attribute based on one or
more predictor attributes. The probabilities
describing the possible outcomes of a given
instance are modelled. Logistic regression
analysis is flexible in terms of the types of
monotonic relationships it can model
between the probability of vulnerability and
predictor attributes. RF is an ensemble
learning method for classification that
consists of a collection of tree-structured
classifiers. In many cases the predictive
accuracy is greatly enhanced as the final
prediction output comes from an ensemble
of learners, rather than a single learner.
Given an input sample, each tree casts a
vote (classification) and the forest outputs
the classification having the majority vote
from the trees.

10. SEMI-SUERVISED LEARNING
 As ensemble learning works by
combining individual classifiers, it typically
requires significant amounts of labeled data
for training. In certain industrial contexts,
relevant and labeled data available for
learning may be limited. Semi-supervised
methods [39] use, for training, a small
amount of labeled data together with a

much larger amount of unlabeled data. This
method that exploits unlabeled data can
enable ensemble learning when there are
very few labeled data. Combining semi
supervised learning with ensembles has
many advantages. Unlabeled data is
exploited to help enrich labeled training
samples allowing ensemble learning: Each
individual learners improved with unlabeled
data labeled by the ensemble consisting of
all other learners. A few different types of
semi-supervised methods, such as
EMbased, clustering-based, and
disagreement-based learning, have been
proposed in literature. But none of these
techniques has been explored for
vulnerability prediction so far. Hence, based
on these motivations, we explore the use of
an algorithm called Co Forest, Co-trained
Random Forest (CF), which applies semi-
supervised learning on RF. It is a
disagreement-based, semi-supervised
learner. CF uses multiple, diverse learners,
and combines them to exploit unlabeled
data (semi supervised learning), and
maintains a large disagreement between the
learners to promote the learning process.

11. FINAL PREDICTOR
 A qualified web application
vulnerability predictor can be built with the
help of the input validation and sanitation
attributes and the machine learning
techniques. By using the above attributes
we will be able to generate a web
application predictor which is highly
accurate, fine-grained and scalable.

V IMPLEMENTATION

A. DERIVATION OF IVS ATTRIBUTES

 The code attributes that characterize
validation and sanitization code
implemented in the program could be used
to predict web application vulnerabilities.
Based on this hypothesis, we propose a set
of code attributes called input validation
and sanitization (IVS) attributes from which
we build vulnerability predictors that are
fine-grained, accurate, and scalable. The

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 88
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

approach is fine-grained because it
identifies vulnerabilities at program
statement levels. We use both static and
dynamic program analysis techniques to
extract IVS attributes. Static analysis can
help assess general properties of a program.
Yet, dynamic analysis can focus on more
specific code characteristics that are
complementary to the information obtained
with static analysis. We use dynamic
analysis only to infer the possible types of
input validation and sanitization code,
rather than to precisely prove their
correctness.

B. LIST OF IVS ATTRIBUTES

 1. Client - Input accessed from HTTP
request parameters such as HTTP Get
2. File - Input accessed from files such as
Cookies, XML
3. Text-database - Text-based input
accessed from database
4. Numeric-database - Numeric-based input
accessed from database
5. Session - Input accessed from persistent
data object such as HTTP Session
6. Uninit - Un-initialized program variable
7. Un-taint - Function that returns
predefined information or information not
influenced by external users.
8. Known-vuln-user - Custom function that
has caused security issues in the past.
9. Known-vuln-std - Language built-in
function that has caused security issues in
the past.
10. Propagate - Function or operation that
propagates partial or complete value of a
string.
11. Numeric Function or operation that
converts a string into a numeric
12. DB-operator Function that filters query
operators such as (=)
13. DB-comment-delimiter Function that
filters query comment delimiters such as (–)
14. DB-special Function that filters other
database special characters different from
the above, such as (\x00) and (\x1a)
15. String-delimiter Function that filters
string delimiters such as (‘) and (“)

16. Lang-comment-delimiter Function that
filters programming language comment
delimiter characters such as (/)
17. Other-delimiter Function that filters
other delimiters different from the above
delimiters such as (#)
18. Script-tag Function that filters dynamic
client script tags such as (<script>)
19. HTML-tag Function that filters static
client script tags such as (<div>)
20. Event-handler Function that disallow
the use of inputs as the values of client side
event handlers such as (onload =)
21. Null-byte Function that filters null byte
(%00)
22. Dot Function that filters dot (.)
23. DotDotSlash Function that filters dot-
dot-slash (../) sequences
24. Backslash Function that filters
backslash (\)

 25. Slash Function that filters slash (/)
26. Newline Function that filters newline
(\n)
27. Colon Function that filters colon (,) or
semi-colon (;)
28. Other-special Function that filters any
other special characters different from the
above
29. Encode Function that encodes a string
into a different format
30. Canonicalize Function that converts a
string into its most standard, simplest form
31. Path Function that filters directory paths
or URLs

 32. Limit-length Function or operation that
limits a string into a specific length

5.1 Implementation of vulnerability

predictor

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 5, May-2017 89
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

5.2 Implementation of vulnerability

predictor

VI CONCLUSION
 In this project, the input validation and

sanitation attributes are generated. The first
step of our approach is to compute a static
backward slice for each sink. Both the static
program analysis and dynamic program
analysis are used to extract the input validation
and sanitation attributes. The program analysis
is based on the control flow graph, control
dependence graph and system dependence
graph of a web program. The input validation
and sanitation attributes will act as the building
blocks for the web application vulnerability
predictor.

 REFERENCES
[1]. N. Jovanovic, C. Kruegel, and E. Kirda,
“Pixy: A static analysis tool for detecting
web application vulnerabilities,” in Proc.
IEEE Symp. Security Privacy, 2006, pp.
258–263.

[2]. Y. Xie and A. Aiken, “Static detection
of security vulnerabilities in scripting
languages,” in Proc. USENIX Security
Symp., 2006, pp. 179–192.

[3]. D. Balzarotti, M. Cova, V. Felmetsger,
N. Jovanovic, E. Kirda, C. Kruegel, and G.
Vigna, “Saner: Composing static and
dynamic analysis to validate sanitization in
web applications,” in Proc. IEEE Symp.
Security Privacy, 2008, pp. 387–401.

[4]. L. K. Shar and H. B. K. Tan,
“Predicting SQL injection and cross site
scripting vulnerabilities through mining
input sanitization patterns,” Inf. Softw.

Technol., vol. 55, no. 10, pp. 1767– 1780,
2013.

[5]. E. Arisholm, L. C. Briand, and E. B.
Johannessen, “A systematic and
comprehensive investigation of methods to
build and evaluate fault prediction models,”
J. Syst. Softw., vol. 83, no. 1, pp. 2–17,
2010.

[6]. A. Kie_zun, P. J. Guo, K. Jayaraman,
and M. D. Ernst, “Automatic creation of
SQL injection and cross-site scripting
attacks,” in Proc. Int. Conf. Softw. Eng.,
2009, pp. 199–209.

[7]. M. Martin and M. S. Lam, “Automatic
generation of XSS and SQL injection
attacks with goal-directed model checking,”
in Pro0c.USENIX Security Symp., 2008,
pp. 31–43.

IJSER

http://www.ijser.org/

